An optimization of triangular network and its use in DEM generalization for the land surface segmentation

Richard Feciskanin, Jozef Minár

Comenius University in Bratislava, Faculty of Natural Sciences
Department of Physical Geography and Geoinformatics
Motivation

▪ Geomorphological mapping / segmentation
 ▪ Course analytic scale
 ▪ Generalization is necessary
 ▪ Finding appropriate levels

▪ Quality of generalization methods
 ▪ Common methods limitation
 ▪ Insufficient preservation of land surface shapes
Generalization methods working with TIN

- Irregular elements and complex data structure
 - Flexible structure
 - Effective for capturing shape changes
 - Suitable for simplification
 - Suitable for further analysis
Generalization methods working with TIN

- Classical methods for DEM: grid \Rightarrow TIN
 - Selection of relevant elements
 - Determination of deviations

- Polygonal simplification
 - TIN modifications instead of selection of vertices
 - Maximum shape fidelity
 - Advanced in computer graphics
Polygonal simplification / triangle optimization

Maintaining the characteristic shapes

Triangle edges are located on the greatest surface changes
Triangle area represents homogeneous part

✓ Principle of maximizing internal homogeneity and external heterogeneity in land surface segmentation
Quadric error metric simplification (QEMS) method

- Decimation of a triangular network by edge contraction
- Minimization of the quadratic distance of a point to the planes of the surrounding triangles
 - In accordance with the theory of the optimal triangle
 - Without subjective choices
Quadric error metric simplification (QEMS) method
Comparison with conventional method

QEMS

vs

maximum z-tolerance

- Widespread approach to generalization
- Zemlya implementation was used

- RMSE of signed approximation error
 - Signed Euclidean distance (point to surface)
 - Random points on triangle planes (approx. 50 000)
Comparison (dolina Zeleného plesa valley)

RMSE = 1212.05480 \times 10^{-0.64548}
R^2 = 0.99041

RMSE = 407.09559 \times 10^{-0.62924}
R^2 = 0.99763
Comparison (artificial models)

RMSE = 2739.28 ± 1.13
$R^2 = 0.99639$

RMSE = 273.64 ± 1.04
$R^2 = 0.99031$
Suitability for segmentation

- Third order morphometric quantities
 - Affinity of second order quantities to constant values

- Calculation of values of curvature changes
 - \((k_n)_{ss}\) \((k_n)_{sc}\) \((k_n)_{cc}\) \((k_n)_{cs}\)
 - Based on a third-order polynomial least-square fitting

- Concentration of data around zero
 - Quantile-based measure of kurtosis
 \[K_0 = \frac{\tilde{x}_{95} - \tilde{x}_5}{\tilde{x}_{0+5} - \tilde{x}_{0-5}} \]
K_0 curves (Slovinec/Sandberg)
K_0 curves
K_0 curves (Dolina Zeleného plesa valley)
K_0 comparison

![Graph showing K_0 comparison with different datasets and average triangle area.](image_url)
Conclusions

▪ QEMS algorithm is well suited for land surface segmentation
 ▪ Preserves important topographic features efficiently

▪ Local maximum of K_0 depict well the leading landforms in nested hierarchy

▪ The experiment of comparing K_0 values
 ▪ Significant differences between natural and artificial surfaces
 ▪ Can easily be interpreted in terms of the theory of elementary forms
Thank you

richard.feciskanin@uniba.sk
jozef.minar@uniba.sk